MathWorks[®] Day – Poster Session NEU, Raytheon Amphitheater Monday, March 12, 2018

A MATLAB[®]-BASED NUMERICAL ALGORITHM FOR STOCHASTIC SIMULATION OF STRUCTURAL LOAD, **RESPONSE AND DAMAGE (MATLAB® SLRD) INDUCED BY NON-STATIONARY THUNDERSTORM DOWNBURSTS** Viet Le⁽¹⁾, Luca Caracoglia⁽²⁾

ABSTRACT

- •This poster summarizes recent application of the Wavelet-Galerkin (WG) approach to the stochastic simulation of structural load, response and damage (SLRD) caused by non-stationary wind loads.
- •Traditional frequency domain approaches for analysis of under these non-stationary conditions are SLRD inaccurate while time-domain numerical techniques are computationally demanding.
- •The WG approach provides rapid approximations of the solution to differential equations that govern structures subjected to downburst wind loads.
- This advantage is crucial for stochastic analysis in a Monte Carlo environment, requiring vast amounts of simulations.
- Exploitation of innovative computational methods will further optimize this technique for stochastic analysis of SLRD induced by non-stationary winds.

St

(1) PhD Student, (2) Associate Professor Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115

4. RESEARCH HIGHLIGHTS

• Digital simulation of the wind field of a thunderstorm downburst is feasible with space-time intensification functions for amplitude of mean wind speed and random turbulence

• Wavelet-Galerkin approach yields significant savings in computational time for Monte Carlo simulation of structural load, response and damage (SLRD) due to non-stationary wind phenomena such as thunderstorm downbursts

• Fragility curves and surfaces, using maximum mean wind speed of the downburst as an intensity measure, illustrate system' likelihoods for exceeding structural limit states in stochastic analysis of SLRD

5. REFERENCES

[1] A. Latto, H. Resnikoff, E. Tenebaum, The evaluation of connection coefficients of compactly supported wavelets, in: Proceedings of the French-USA workshop on Wavelets and Turbulence, Princeton University, June 1991.

[2] T.-H. Le, L. Caracoglia, Computer-based model for the transient dynamics of a tall building during digitally simulated Andrews AFB thunderstorm, Computers and Structures 193 (2017) 44-72. [3] V. Le, L. Caracoglia, A preliminary examination of structural fragility for a cantilever structure subjected to a thunderstorm downburst loading, in: Proceedings of the 13th Americas Conference on Wind Engineering (ACWE13), University of Florida, Gainesville, Florida, USA, 2017. [4] W. Cui, L. Caracoglia, Simulation and analysis of intervention costs due to wind-induced damage on tall buildings, Engineering Structures 87 (2015) 183–197.

6. ACKNOWLEDGEMENTS

• National Science Foundation (USA), Grant CMMI 1434880, partial support from 2014 to 2018.

• Dr. Thai-Hoa Le (SOH Engineering, Burlington VT, USA), for code development of Wavelet-Galerkin approach.